Telegram Group & Telegram Channel
Какие нелинейные преобразования данных вы знаете?

Нелинейные преобразования меняют структуру распределения. Это помогает улучшить модели, делая их способными улавливать сложные зависимости в данных.

Вот некоторые из наиболее распространённых нелинейных преобразований:
▪️Логарифмическое преобразование.
Оно позволяет увеличить расстояние между небольшими значениями и уменьшить между большими значениями. Преобразование делает скошенное распределение более симметричным и приближённым к нормальному.
▪️Преобразование с помощью квадратного корня.
Действует аналогично логарифмическому, однако менее агрессивно. Его без изменений можно применять к нулевым значениям.
▪️Преобразование Бокса-Кокса.
Обычно используется для трансформации зависимой переменной в случае, если у нас есть ненормальное распределение ошибок и/или нелинейность взаимосвязи, а также в случае гетероскедастичности.
▪️Преобразование Йео-Джонсона.
Позволяет работать с нулевыми и отрицательными значениями.

#машинное_обучение
#статистика



tg-me.com/ds_interview_lib/312
Create:
Last Update:

Какие нелинейные преобразования данных вы знаете?

Нелинейные преобразования меняют структуру распределения. Это помогает улучшить модели, делая их способными улавливать сложные зависимости в данных.

Вот некоторые из наиболее распространённых нелинейных преобразований:
▪️Логарифмическое преобразование.
Оно позволяет увеличить расстояние между небольшими значениями и уменьшить между большими значениями. Преобразование делает скошенное распределение более симметричным и приближённым к нормальному.
▪️Преобразование с помощью квадратного корня.
Действует аналогично логарифмическому, однако менее агрессивно. Его без изменений можно применять к нулевым значениям.
▪️Преобразование Бокса-Кокса.
Обычно используется для трансформации зависимой переменной в случае, если у нас есть ненормальное распределение ошибок и/или нелинейность взаимосвязи, а также в случае гетероскедастичности.
▪️Преобразование Йео-Джонсона.
Позволяет работать с нулевыми и отрицательными значениями.

#машинное_обучение
#статистика

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/312

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

Mr. Durov launched Telegram in late 2013 with his brother, Nikolai, just months before he was pushed out of VK, the Russian social-media platform he founded. Mr. Durov pitched his new app—funded with the proceeds from the VK sale—less as a business than as a way for people to send messages while avoiding government surveillance and censorship.

Telegram is riding high, adding tens of million of users this year. Now the bill is coming due.Telegram is one of the few significant social-media challengers to Facebook Inc., FB -1.90% on a trajectory toward one billion users active each month by the end of 2022, up from roughly 550 million today.

Библиотека собеса по Data Science | вопросы с собеседований from it


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA